Elliptic Solitons and Heun’s Equation
نویسنده
چکیده
We find a new class of algebraic geometric solutions of Heun’s equation with the accessory parameter belonging to a hyperelliptic curve. Dependence of these solutions from the accessory parameter as well as their relation to Heun’s polynomials is studied. Methods of calculating the algebraic genus of the curve, and its branching points, are suggested. Monodromy group is considered. Numerous examples are given.
منابع مشابه
Towards Finite-Gap Integration of the Inozemtsev Model
The Inozemtsev model is considered to be a multivaluable generalization of Heun’s equation. We review results on Heun’s equation, the elliptic Calogero–Moser–Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.
متن کاملQuasi-Periodic Solutions of Heun’s Equation
By exploiting a recently developed connection between Heun’s differential equation and the generalized associated Lamé equation, we not only recover the well known periodic solutions, but also obtain a large class of new, quasi-periodic solutions of Heun’s equation. Each of the quasi-periodic solutions is doubly degenerate.
متن کاملSolitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation
This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...
متن کاملFinite-gap Potential, Heun’s Differential Equation and Wkb Analysis
with the condition γ+ δ+ ǫ = α+β+1 [12]. It has four singularities {0, 1, t,∞} and they are all regular. Heun’s equation is known to be a standard form of the secondorder Fuchsian differential equation with four singularities. The parameter q is not determined by the local monodromy, and is called an accessory parameter. Heun’s differential equation frequently appears in Physics, i.e. black hol...
متن کاملThe Heun Equation and the Calogero-moser-sutherland System V: Generalized Darboux Transformations
We obtain isomonodromic transformations for Heun’s equation by generalizing Darboux transformation, and we find pairs and triplets of Heun’s equation which have the same monodromy structure. By composing generalized Darboux transformations, we establish a new construction of the commuting operator which ensures finite-gap property. As an application, we prove conjectures in part III.
متن کامل